
JOURNAL OF APPLIED POLYMER SCIENCE VOL. 18, PP. 1619-1623 (1974) 

Misconceptions About Filled Polymers 

M. R.  PIGGOTT and J. LEIDNER, Materials Research Centre, 
Department of Chemical Engineering and Applied Chemistry, 

University of Toronto, Toronto, Ontario, Canada 

Synopsis 
The idea that, with filled polymers, length fraction, area fraction, and volume fraction 

of filler are different appears to have gained wide acceptance. The fallacy of this, 
except for special directions in ordered arrangements, is demonstrated. This misunder- 
standing has led to widespread misinterpretation of experimental results in this field. 

INTRODUCTION 

The idea that length fraction depends on volume fraction to the one- 
third power appears to have first been applied to filled polymer systems by 
Bueche.' It was carried a stage further by Nielsen2 who, in deriving his 
eq. ( 5 ) ,  seems to have assumed that area fraction depends on volume frac- 
tion to the two-thirds power. The Nielsen treatment has since been widely 
quoted and applied (see, e.g., Sahu and Broutman3 and Brassell and Wisch- 
mann4), sometimes with  variation^,^.^ but still apparently based on the view 
that the different fractions have different values. 

An understanding of the relationship between length fraction area frac- 
tion and volume fraction is a first important requirement if the mechanical 
properties of particulate composites are to be understood. It is interesting 
to  note that in the mrtallurgical field, these relationships do seem to be 
well Understood, and etched sections have bcen used for a long time in the 
determination of volume fractions of precipitates, and automatic methods 
for doing this have recently been perfrcted.I 

Relation Between the Fractions 

Consider a material containing randomly dispersed particles of any 
shape and size. We will examine a cubic box of this composite which is 
sufficiently large to be representative of the whole material. 

Any straight line long enough to traverse the box completely will have a 
length fraction of dispersed material which is the same as that of any other 
equally long line. In addition, any plane sheet of sufficiently large extent 
to divide the box completely nil1 have the same area fraction of dispersed 
material as any other equally large plane sheet. 

In  particular, the line OX, and any line in the plane OXDY (see Fig. 1) 
will have this length fraction, L,, say. Thus, the total area occupied by 
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Fig. 1. Representative portion of filled polymer. The cube drawn is envisaged as 
being sufficiently large so that any plane in the cube has the same area fraction as any 
other plane when filler is randomly disposed. 

particles sectioned by an element of area of width dy on the face OXDY is 
L, ady, a being the length of the sides of the box. 

To calculate the area fraction of the face OXDY, A,, say, we sum the 
area of particles over all the elements of thickness dy across the cube. This 
is done by making dy tend to zero and integrating, i.e., 

A ,  = f L,ady = L,  

since L, is indepcndent of y. 

two parallel planes, dy apart and parallel to the face ACDY. 
A,u2dy, so that the same reasoning as above gives 

Thus, area fraction is equal to length fraction. 
Next, conaider the total volume of the parts of particles lying between 

This is 

V ,  = $ A,u2dy = A,. 

Thus, 
L, = A ,  = V,. 

If, instead of considering a random arrangement, we consider an ordered 
one, we get a different result. Let the box in Figure 1 represent one unit 
cell of a primitive cubic lattice of spheres of equal radius, r ,  say (2r < a.) 
The box is assumed to  have a sphere a t  the center. The volume fraction 
of spheres is 4nr3/(3a3). The area fraction varies according to  the plane 
considered. For the plane AZBC (or any other face of the box), the area 
fraction is zero. For a plane going through the center of the box, and 
parallel to one of the faces, the area fraction is 

A,’ = 7d/a2 = 12V;’a. 
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This is the formula used by Nicolais and Narkis5 and by Cohen and Ishai.6 
For diagonal planes like OACX, the area fraction is 

A,” = 2?rr2/a2 = 1.7VP3. 

Finally, for a plane in an entirely random direction, u-e have to consider 
many units of the structure to  find the true area fraction. Such a plane 
(e.g., the one that crosses OX at a/%, OY a t  ale, and OZ a t  a/ln 2) has an 
area fraction 

A ,  = 4?rr3/(3a3) = V,. 

It is most unlikely that experimental samples ever have arrangements 
which have long-range order, however. To have high volume fractions, 
some ordering is necessary, but this is most likely to  occur over relatively 
small volumes, and adjacent ordered volumes will normally be randomly 
oriented with respect to each other, just as polycrystalline metals have 
randomly oriented crystals. At low volume fractions, of course, even 
short-range order is unlikely, unless clumping occurs. 

PRACTICAL IMPLICATIONS 

Effects of inclusions on strength must come about primarily as a result 
of particle shape and, to a lesser degree, on volume fraction and particle 
size. 

When the inclusions are long well-bonded rods or fibers, great improve- 
ments in strength are possible. On the other hand, when they consist of 
poorly bonded or weak sheets of material, the matrix can be deprived of most 
of its strength even when the volume fraction of the inclusions is very small 
(e.g., hydrogen-embrittled zirconium). This weakening is due to stress 
concentrations, coupled with a size effect. Since Ingliss solved the stress 
field around an ellipse, and Griffithg showed that the size of elliptical cracks 
was also important, stress concentrations due to voids of a wide range of 
shapes have been worked out, and a number of solutions have been obtained 
for stresses around inclusions of various shapes. 

In  the case of rounded cracks and inclusions, the stress concentrations 
are much less severe than when they have sharp corners. However, Sahu 
and B r ~ u t m a n , ~  using finite element analysis, show that rigid inclusions 
with circular sections give stress concentrations which vary from just under 
2 for V, = 0.033 to just under 3 for V, = 0.489. Thus, considerable weak- 
ening can result from using poorly bonded spheres. The actual amount of 
weakening will also depend to some extent on the sphere size and the degree 
of brittleness of the matrix material. 

As a first approximation, however, it is reasonable to assume that 
strength, or flow stress, u ,  should depend on volume fraction to the first 
power rather than any other, when spherical, or approximately equiaxed 
and rounded inclusions are used, i.e., 

uD = a - bV, (1) 
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Fig. 2. Linear and two-thirds power laws compared. Both two-thirds power laws 
are indistinguishable from linear expressions for volume fractions greater than 0.2. 
uu = Strength of filled polymer; uo = strength of polymer without filler; V ,  = volume 
fraction. 

where a and b are influenced by the size, shape, modulus, and bonding of 
the inclusion particles, and by matrix strength and modulus. 

Stress concentration effects can, of course, be very important even at  
vanishingly small volume fractions. Neglect of this can result in spurious 
agreement with the two-thirds power law. If weakening due to stress con- 
centrations reduces the matrix strength to about 0.8 of its normal value, 
then 

no = 0.8 QO - bV,. (2) 

It can be seen from Figure 2, where eq. (2) is compared with two-thirds 
power expressions, that, between V ,  = 0.15 and 0.6, it is hard to choose be- 
tween the first power and fractional power laws; u0 is, of course, the matrix 
strength in the absence of voids or fillers. 

PRACTICAL EXAMPLES 

Equation (2) fits the values for composite strength of Nicolais, Drioli, and 
Landello much better than the two-thirds power law. Their experimental 
points are on a straight line which intersects the stress axis a t  0.7 uo, and 
the point at V ,  = 0.12 is a considerable distance away from the two-thirds 
power curve. Sahu and B r o ~ t m a n ’ s ~  results for composite strength fit the 
first-power law, eq. (l), better than the fractional power law, and so do Ishai 
and Cohen’sll and Brassell and Wischmann’s4 results for composite yield 
strength (b  in eq. (1) can, of course, be negative). 

Brassell and Wischmann’s results for tensile strength fit first-power and 
fractional power laws equally well, and Nicolais and Narkis’s5 results for 
tensile yield strength also fit both equally well. Finally, Ishai and 
Cohen’sll results for the yield stress of composites with voids fit the two- 
thirds power law slightly better. 
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CONCLUSIONS 

The interpretations of results of mechanical tests on filled polymers by 
many workers appear to have been based on a misunderstanding. The ex- 
periments on strength and yield stress of these composites fit a relation- 
ship of the type 

u = a - bV, 

somewhat better than relationships involving fractional powers of volume 
fraction. 
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